
SIMPLE SEARCH WITH
ELASTIC SEARCH

MARK STORY
@MARK_STORY

WAT?
Java based
Lucene powered
JSON driven
Document orientated database
All out super search solution
Easy to setup, and use

INDEXES AND TYPES
INDEXES

Similar concept to databases.
Contain multiple types.

TYPES
Similar concept to tables.
Defines datatypes and indexing rules.

DOCUMENT BASED REST API
Simple to use and easy to understand.

CREATE A DOCUMENT
curl -XPOST localhost:9200/contacts/people -d '{
 "name": "Mark Story",
 "email": "mark@mark-story.com",
 "twitter": "@mark_story",
 "country": "Canada",
 "tags": ["cakephp", "cakefest", "canada"]
}'

Response:
{"ok":true,
"_index":"contacts",
"_type":"people",
"_id":"9izMCaSiQBqD1AJW8si57g",
"_version":1}

READ IT BACK
curl -XGET localhost:9200/contacts/people/$id?pretty=true

Response:
{"_index":"contacts",
"_type":"people",
"_id":"9izMCaSiQBqD1AJW8si57g",
"_version":1,
"exists":true,
"_source" : {
 "name": "Mark Story",
 "email": "mark@mark-story.com",
 "twitter": "@mark_story",
 "country": "Canada",
 "tags": ["cakephp", "cakefest", "canada"]
}}

DELETE IT!
curl -XDELETE localhost:9200/contacts/people/$id

Response:
{"ok":true,
"found":true,
"_index":"contacts",
"_type":"people",
"_id":"9izMCaSiQBqD1AJW8si57g",
"_version":2}

SIMPLE SEARCH!
More on search to come

curl -XGET localhost:9200/contacts/people/_search?q=Mark&pretty=true

Response:
{"took":14,
"timed_out":false,
"_shards":{
 "total":5,
 "successful":5,
 "failed":0
},
"hits":{
 "total":1,
 "max_score":0.11744264,
 "hits":[
 {"_index":"contacts",
 "_type":"people",
 "_id":"slJlyMBTSWaqAMfZUU-lDw",
 "_score":0.11744264,
 "_source" : {
 "name": "Mark Story",
 "email": "mark@mark-story.com",
 "twitter": "@mark_story",
 "country": "Canada",
 "tags": ["cakephp", "cakefest", "canada"]
 }
 }
]
}}

THIS ALL SOUNDS TOO
BADASS TO BE TRUE

DOCUMENT "DATABASE" IS A
BIT LIMITED

Partial updates are doable but painful
No joins
No map reduce
Cannot replace all other datasources

BUT SEARCH IS AMAZZZING

SEARCH BETWEEN TYPES &
INDEXES
Search multiple types

Search multiple indexes in your cluster

curl -XGET localhost:9200/contacts/people,companies/_search?q=name:Mark

curl -XGET localhost:9200/_all/people/_search?q=name:Mark

FANCY SEARCH OPTIONS

SEARCH WITH TEXT
EXPRESSIONS

curl -XGET localhost:9200/contacts/people/_search?pretty=true -d '{
 "query": {
 "query_string": {
 "query": "mark OR weldon"
 }
 }
}'

HIGHLIGHT SEARCH
KEYWORDS

Wrap search terms in highlighting text/markup/html. Great for larger
documents, as you can extract fragments.

curl -XGET localhost:9200/contacts/people/_search?pretty=true -d '{
 "query": {
 "text": {
 "email": "mark"
 }
 },
 "highlight": {
 "fields": {
 "email": {},
 "name": {}
 }
 }
}'

FACETS
Facets provide aggregated data about a query. You can use this data

to create drill down search, or histogram data.

Term counts.
Custom script values.
Ranges - like price ranges.
Geo distance facets - aggregate results by distance.

curl -XGET localhost:9200/contacts/people/_search?pretty=true -d '{
 "query": {
 "query_string": {
 "query": "*.com"
 }
 },
 "facets": {
 "tagged": {"terms": {"field": "tags"} }
 }
}'

KNOBS & BUTTONS

MAPPINGS
Allows fine-grained searching later on, and lets you configure
custom mappings.
Control the data types, and indexing used for JSON document
types.
Disable indexing on specific fields.
Configure custom analyzers. For example, non-english stemming.

AVAILABLE MAPPING TYPES
string, integer, float, boolean, null
object - Standard type for nested objects. Allows
Arrays are automatically handled as the above.
properties to be defined.

multi_field - Allows a field to be handled multiple ways with different
aliases.
nested - Indexes sub objects, and works with nested filter/queries.
ip - For ipv4 data.
geo_point - For lat/lon values. Enables piles of search options.
attachment - Store a blob. Can index many text based documents
like PDF.

CREATE A MAPPING
curl -XPUT localhost:9200/contacts/people/_mapping -d '{
 "people": {
 "properties": {
 "name": {"type": "string"},
 "email": {"type": "string"},
 "twitter": {"type": "string"},
 "country": {"type": "string"},
 "tags": {"type": "string"}
 }
 }
}'

DEFINE THE ANALYZER USED
When defining a field you can use analyzer index_analyzer,
and search_analyzer to customize the way data is stored, and or
searched.
You can also disable analyzing for specific fields.

DISABLE INDEXING
{
 "name": {
 "type": "string",
 "index": "not_analyzed",
 },
 "none": {
 "type": "integer",
 "index": "no"
 }
}

SHARDS & REPLICAS
SHARDS

Define how many nodes you want to split your data across.

If a node goes down, you still have some of your data.

You can use routing to control how data is sharded.

More shards improves indexing performance, as work is distributed.

SIMPLE SHARDING

SHARD OVER MULTIPLE NODES

REPLICAS
Define how many copies of your data you want.

If several nodes go down, you might still have all your data.

More replicas improves search performance and cluster availability.

REPLICAS

MULTI-TENANCY
Multi-tenancy is a reasonably common requirement, and there are a

few ways to do it.

ONE INDEX PER 'TENANT'

Great for small number of tenants.
Painful for larger number of tenants. As sharding and replicas can
be harder to manage.

curl -XGET localhost:9200/mark/contacts/_search?pretty=true -d '{
 "query": {
 "query_string": {
 "query": "weldon OR jose"
 }
 }
}'

SPECIAL FILTER CONDITIONS

More error prone as you have to include a filter condition.
Easy to shard and setup replicas.
Easily scales to many tenants. As shards/replicas are shared.
Make sure tenant id is a non-analyzed value.

curl -XGET localhost:9200/accounting/invoices/_search?pretty=true -d '{
 "query": {
 "filtered": {
 "filter": {
 "term": {"accountid": 1}
 },
 "query": {
 "query_string": {
 "query": "purple wifi"
 }
 }
 }
 }
}'

OTHER BATTERIES INCLUDED
Routing Define how documents are sharded.

Rivers Pipe data in realtime from sources like RabbitMQ.

Thrift Talk thirft to ElasticSearch.

INTEGRATION WITH
CAKEPHP

HTTPSOCKET + JSON_ENCODE()
Basic, can be hard to use.
No magic.

ELASTICSEARCH DATASOURCE

Behavior to auto index on aftersave
Datasource for searching elasticsearch
Console app to index models

(David Kullman)

ELASTICSEARCH PLUGIN

Similar features to the previous plugin
Offers more control on how data is indexed

(Kevin von Zonneveld)

QUESTIONS?

