
Plugin Development
making reusable libraries

Goals of Talk

Familiarize you with CakePHP’s Plugin system

How plugins work and how to build one

How to design plugins to be reusable

Who am I

Mark Story - from Canada

CakePHP Core member since May 08

Author of DebugKit

1.5 years CakePHP experience

4 years PHP experience

What is a plugin?

Plugins are ‘mini’ applications or bundles of functionality.

Generic enough to be reused.

Focused on a particular task or area of functionality.

Introduction to Plugins

History of plugins

Introduced in CakePHP 1.0

Plugin integration expanded in 1.1.x.x series.

Not all Cake objects were accessible, problems with
webservices and plugins.

No css, js or images.

Plugins Today

Plugin system rebuilt in 1.2

All Cake objects can be accessed from main app. Or from
other plugins.

Plugins can have vendors, css, js and images!

Mini Applications?

Not always complete applications, but a set of tasks or
related objects that can be reused in many places.

For example a blog/Mini CMS, login system, debug kit,
photo sharing, ACL management, graph generation.

Basically anything that you would need in more than one
application and is a generic enough set of functions to easily
be reused.

Why bother with plugins?

Save you time and money in the long term.

Easier to share. Plugins create easy to install bricks of
functionality making them ideal to share.

If well designed they can be used over and over again, to
make duct tape applications.

File Structure of a plugin

All plugins in app/plugins

plugin_name contains plugin
files.

plugins have very similar file
layout to app.

Plugin Naming Conventions

Plugin directory is lower cased & underscored

Plugin name is CamelCased.

Common to have plugin name as a prefix for all classes to
avoid namespace conflicts with app. Keep prefix’s short.

Plugin Naming Conventions

Example Graphs plugin.
app/plugins/graphs

GraphsAppModel - graphs_app_model.php

GraphsAppController - graphs_app_controller.php

Plugin Naming Conventions

Prefixing classes

Graph model
GraphsGraph - graphs_graph.php

Graphs controller
GraphsGraphsController -
graphs_graphs_controller.php

Plugin Naming Conventions

All plugins need plugin_name_app_controller.php and
plugin_name_app_model.php

 These classes should inherit from AppController and
AppModel respectively.

Plugin Routes

Plugin key

plugin key lets you specify that the link/route is a plugin
route.
array(‘plugin’ => ‘graphs’, ‘controller’ =>

‘graphs’, ‘action’ => ‘index’)

Plugin Tests & Fixtures

Plugins can have and should have their own tests.

Test cases work exactly like app tests.

Fixtures used in tests need a PluginName prefix

ie. var $fixtures = array(‘debugKit.post’);

Practical Plugins
Loading and using plugin files.

Loading Plugin files
Using App::import()

Loading Plugin files

Using class properties

Loading Plugin files

Plugin.Class is used everywhere.

Inside a plugin you do not need to use pluginName.class It is
assumed you want the plugin class.

However, you can use Plugin.Class to refer to another plugin!

CSS, JS and Images oh my!

All plugin assets must be in
plugin_name/vendors

paths to plugin assets are
slightly different.

Plugin asset paths.

Plugin asset paths.

Plugin asset paths.

Plugin asset paths.

Plugin asset paths.

Plugin asset paths.

Plugin Shells

Plugins can have shells!

Place plugin shells in plugin_name/vendors/shells

Access plugin shells via cake shellName. Naming conflicts
can be resolved by using pluginName.shellName

Interplugin communication

Communication between plugins can be done with
requestAction()

Not always the best option. But it gets the job done.

Squeezing requestAction()

If you need to use requestAction() between plugins,
remember to use array() urls and not string urls.

Array urls skip all the route parsing steps.

Squeezing requestAction()

I hate pink.

I hate pink.

So you’ve found an amazing plugin

Only problem is all the views are pink & black.

Or the markup has a serious case of ‘divitis’.

Replacing Plugin Views

By adding the same named directory to app/views you can
override/replace some or all of the view files for a plugin.

You can also use ThemeView. Its one stop shopping for view
replacement.

DebugKit
A case study in plugin development.

Debug Kit Background

Was initially planned as set of enhancements to core
Debugger.

Debug Kit was designed as a CakePHP counterpart to the
symfony / django debug tools.

Transition to a plugin

When planning out the enhancements to Debugger it became
clear that not all the planned code would fit inside Debugger.

Providing it as a set of loose classes would make it difficult to
use and install.

By creating a plugin, it became a single package that people
could easily use.

Benefits of Plugin

The benefits of creating the DebugKit as a plugin have been
numerous.

Far more power.

Planned features added as DebugKitDebugger.

Far easier for others to use.

DebugKit Design

DebugKit has no controllers or models.

All functionality is provided through Component, View,
Helpers and Vendors files.

Vendor files provide Custom Debugger as well as FirePHP
support.

DebugKit Design

Plugin is easy to use, and unobtrusive to primary
application.

Can be easily attached to any application.

Leverages plugin assets to provide js, css and images.

DebugKit Features

Adds many features to the host application seamlessly and
without disturbing main app.

DebugKit is extensible, custom panels, and toolbar helper
back ends can be added.

Designing plugins

The Basics

What is it going to do?

How is it going to provide its functionality?

What configuration will be required?

For internal use only? or for wider distribution?

Configuration & Setup

Configuration is a necessary evil.

Most plugins will require some amount of work to setup.
Can build an installer to minimize pain factor.

Most of the time an informative README will suffice.

Remember that your users are other developers.

Configuration

Routing

include custom routing in plugin/config/routes.php.
This makes them easy to find and easy to include.

There is no core method to load plugin routes. However a
simple include() works in 90% of cases. Again
documentation is key.

Configuration

Configure settings.

Good practice to use Configure::write()/
Configure::read()

Nest your settings under pluginName.

e.x. UserManager.UserClass

Configuration

If you have a lot of config settings, try storing them in
config/bootstrap.php so they can easily be included.

Less is more. Use the fewest number of configuration settings
possible.

Let your plugin API be your configuration.

Distributing plugins	

If you choose to distribute your work, some thing to consider.

SQL and required database schema.

Documentation.

Hosting / SCM.

Licensing.

Distributing plugin SQL

SQL dump

Simple and easy to use.

Tied to one database server in many cases.

Migrations can be painful.

Distributing plugin SQL

Cake Schema

Database independent.

Easy to do migrations.

Requires shell access, or custom install/upgrade
functions.

Documentation

Need for documentation changes depending on how your
plugin works or interacts with primary app.

Good doc blocks are always a good place to start.

Wiki or blog articles.

Hosting / SCM

Every good plugin needs a good home. Luckily there are
plenty of options.

http://thechaw.com

http://github.com

http://cakeforge.org

http://beanstalk.org

http://thechaw.com
http://thechaw.com
http://github.com
http://github.com
http://cakeforge.org
http://cakeforge.org

Licensing

Licensing

Open Source license like MIT / New BSD or LGPL will keep
users the happiest.

More restrictive licenses are an option as well. But they
change how you host and distribute it as well.

Challenges of plugins

Biggest challenge is keeping them specific yet generic.

Can be difficult to strike a balance between general solution
and a specific implementation.

Keeping everyone happy is hard.

Focus on one thing, and do it well.

Thank you
Thank you for coming and listening.

Questions?

